metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Rong Su and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.041 wR factor = 0.145Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 26 July 2005

Accepted 27 July 2005

Online 12 August 2005

The title compound, $[NiCl(C_{12}H_8N_2)_2(H_2O)]Cl - C_7H_6O_3 \cdot 2H_2O$, is composed of Ni^{II} complex cations, uncoordinated chloride anions, 4-hydroxybenzoic acid (HBA) and uncoordinated water molecules. The Ni^{II} atom is surrounded by two phenanthroline (phen) molecules, a chloride anion and a water molecule in a distorted octahedral geometry. $\pi - \pi$ stacking occurs between parallel phen ligands and between the nearly parallel carboxyl groups of HBA and the phen ligands.

Comment

As part of our ongoing investigation on the nature of π - π stacking in metal complexes (Su & Xu, 2005), the title compound, (I), incorporating phenanthroline (phen), has been prepared and its crystal structure is presented here.

The crystal structure of (I) consists of Ni^{II} complex cations, uncoordinated chloride anions, free 4-hydroxybenzoic acid (HBA) and uncoordinated water molecules. The molecular structure of (I) is shown in Fig. 1; the Ni atom is surrounded by two phen ligands, a coordinated chloride anion and one coordinated water molecule in a distorted octahedral geometry (Table 1). The coordination is similar to that found in *cis*-aquachlorobis(1,10-phenanthroline)nickel(II) chloride ethanol solvate monohydrate (Brewer *et al.*, 2003).

An overlapping arrangement of parallel phen ligands of neighbouring cations is observed (Fig. 2). The face-to-face separations between N1-phen and N1^{vi}-phen and between N3-phen and N3^{vii}-phen are 3.522 (8) and 3.433 (7) Å, respectively [symmetry codes: (vi) 1 - x, 1 - y, 2 - z; (vii) 2 - x, 1 - y, 1 - z]. The separations suggest the existence of π - π stacking.

Adjacent HBA molecules are linked, *via* an $O-H\cdots O$ hydrogen bond that involves the carboxyl group, to form a supramolecular dimer (Fig. 3); the hydrogen-bonded HBA dimer is nearly parallel to the N3/N4-phen mean plane [dihedral angle = 5.4 (3)°]. The partially overlapped arrangement between the HBA dimer and N3/N4-phen is illustrated

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The asymmetric unit of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds.

Figure 2 A diagram showing the parallel arrangement of phen rings.

in Fig. 3. The somewhat short distances to the N3/N4-phen mean plane [O31 3.318 (3), C31 3.435 (4) and O32^{iv} 3.364 (4) Å] suggest the existence of π - π stacking between the carboxyl groups and the phen ligands.

Extensive hydrogen bonding occurs in the crystal structure. Neighbouring complex cations are also linked by $O-H\cdots Cl$ hydrogen bonds. The uncoordinated chloride anion is simultaneously hydrogen bonded to four uncoordinated water molecules (Table 2).

Experimental

An aqueous solution (10 ml) containing $NiCl_2 \cdot 6H_2O$ (0.24 g, 1 mmol), HBA (0.14 g, 1 mmol) and Na_2CO_3 (0.05 g, 0.25 mmol) was added to an ethanol solution (10 ml) of phen (0.20 g, 1 mmol). The mixture was refluxed for 5 h and then filtered. Green crystals were obtained after about six months.

Figure 3

A diagram showing the overlapped arrangement between phen and hydrogen-bonded (dashed lines) HBA dimer.

Crystal data

[NiCl(C12H8N2)2(H2O)]Cl--Z = 2 $D_r = 1.529 \text{ Mg m}^{-3}$ $C_7H_6O_3 \cdot 2H_2O$ $M_{-} = 682.18$ Mo Ka radiation Triclinic, P1 Cell parameters from 12708 a = 10.670 (5) Å reflections b = 12.553 (5) Å $\theta = 3.0\text{--}26.6^{\circ}$ $\mu = 0.89~\mathrm{mm}^{-1}$ c = 13.505 (5) Å $\alpha = 115.242 \ (12)^{\circ}$ T = 295 (3) K $\beta = 93.281 (17)^3$ Block, green $\gamma = 110.841 (17)^{\circ}$ $0.35 \times 0.30 \times 0.19 \text{ mm}$ V = 1481.7 (11) Å³

Data collection

Rigaku R-AXIS RAPID
diffractometer6737 independent reflections
5197 reflections with $I > 2\sigma(I)$
 ω scans ω scans $R_{int} = 0.032$ Absorption correction: multi-scan
(ABSCOR; Higashi, 1995) $\theta_{max} = 27.5^{\circ}$
 $h = -13 \rightarrow 13$
 $T_{min} = 0.736, T_{max} = 0.849$ $k = -16 \rightarrow 15$ 14658 measured reflections $l = -16 \rightarrow 17$

Refinement

Table 1

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2 (F_o^2) + (0.0988P)^2]$
$wR(F^2) = 0.145$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.03	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
6737 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
397 parameters	

rabic r					
Selected	geometric	parameters	(Å,	°)).

Ni-O1	2.087 (2)	Ni-N3	2.105 (2)
Ni-N1	2.095 (2)	Ni-N4	2.072 (2)
Ni-N2	2.092 (2)	Ni-Cl1	2.4246 (12)
O1-Ni-N1	87.56 (9)	N1-Ni-Cl1	171.40 (6)
O1-Ni-N2	95.69 (9)	N2-Ni-N3	91.15 (9)
O1-Ni-N3	172.87 (8)	N2-Ni-N4	168.35 (9)
O1-Ni-N4	93.57 (9)	N2-Ni-Cl1	93.62 (7)
O1-Ni-Cl1	87.88 (7)	N3-Ni-N4	79.39 (9)
N1-Ni-N2	79.59 (9)	N3-Ni-Cl1	93.71 (7)
N1-Ni-N3	91.72 (9)	N4-Ni-Cl1	93.77 (7)
N1-Ni-N4	93.79 (9)		

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1W-H1A\cdots Cl2$	0.94	2.29	3.221 (4)	174
$O1W-H1B\cdots Cl2^{i}$	0.85	2.34	3.183 (4)	169
$O2W - H2A \cdots Cl2$	0.90	2.79	3.449 (5)	131
$O2W - H2B \cdot \cdot \cdot Cl2^{ii}$	0.99	2.41	3.286 (5)	148
$O1 - H1C \cdot \cdot \cdot O1W$	0.85	1.89	2.731 (4)	171
$O1-H1D\cdots Cl1^{iii}$	0.87	2.36	3.227 (3)	171
$O31 - H31 \cdots O32^{iv}$	0.81	1.88	2.652 (4)	160
$O33-H33\cdots Cl1^{v}$	0.86	2.26	3.099 (3)	164

Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (ii) -x + 1, -y + 2, -z + 2; (iii) -x + 2, -y + 1, -z + 2; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y, -z + 1.

The H atoms on the aromatic rings were placed in calculated positions, with C–H = 0.93 Å, and were included in the final cycles of refinement in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$. Other H atoms were located in a difference Fourier map and refined riding in their as-found positions relative to the O atoms, with a fixed isotropic displacement parameter of 0.08 Å².

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997) and *XP* (Siemens, 1994); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Brewer, B., Brooks, N. R., Abdul-Halim, S. & Sykes, A. G. (2003). J. Chem. Crystallogr. 33, 651–655.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1994). XP. Version, 5, 03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.